Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Applied Sciences-Basel ; 12(2), 2022.
Article in English | Web of Science | ID: covidwho-2307540

ABSTRACT

In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment;these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (-7.3 kcal/mol) and verbascoside (-7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (-6.8 kcal/mol), progeldanamycin (-6.4 kcal/mol), and rhodoxanthin (-7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of -6.3 kcal/mol and -6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.

2.
Natural Product Communications ; 17(6), 2022.
Article in English | EMBASE | ID: covidwho-2299153

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is causing coronavirus disease 2019 (COVID-19) pandemic. Ancient Chinese herbal formulas are effective for diseases caused by viral infection, and their effects on COVID-19 are currently being examined. To directly evaluate the role of Chinese herbs in inhibiting replication of SARS-CoV-2, we investigated how the phytochemicals from Chinese herbs interact with the viral RNA-dependent RNA polymerase (RdRP). Total 1025 compounds were screened, and then 181compounds were selected for molecular docking analysis. Four phytochemicals licorice glycoside E, diisooctyl phthalate, (-)-medicocarpin, and glycyroside showed good binding affinity with RdRp. The best complex licorice glycoside E/RdRp forms 3 hydrogen bonds, 4 hydrophobic interactions, 1 pair of Pi-cation/stacking, and 4 salt bridges. Furthermore, docking complexes licorice glycoside E/RdRp and diisooctyl phthalate/RdRp were optimized by molecular dynamics simulation to obtain the stable conformation. These studies indicate that they are promising as antivirals against SARS-CoV-2.Copyright © The Author(s) 2022.

3.
J Taiwan Inst Chem Eng ; 145: 104838, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2298875

ABSTRACT

Background: Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods: H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings: 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.

4.
Pharmacognosy Journal ; 14(3):681-689, 2022.
Article in English | CAB Abstracts | ID: covidwho-2283973

ABSTRACT

Background: Antiviral vaccine is not effective, synthetic antiviral drugs are highly toxic, leading to increased interest in herbal medicines as promising antiviral drugs. Recently, Vipdervir has been developed from medicinal herbs with the aim to support and treat diseases caused by viruses such as H5N1 and SARSCoV- 2. In the present study, we assessed Vipdervir's antiviral activity against H5N1 and SARS-CoV-2. In addition, we also evaluated the acute toxicity and repeated dose toxicity of Vipdervir in mice and rabbits, respectively. Methods: H5N1 inhibitory effect of Vipdervir was assessed using hemagglutination inhibition assay. Vipdervir's SARS-CoV-2 inhibitory effect was evaluated by Plaque Reduction Neutralization assay. Acute and repeated dose oral toxicities of Vipdervir were determined according to OECD 423 and OECD 407 guidelines, respectively. Results: Data show that Vipdervir is effective against both H5N1 and SARSCoV- 2. At concentrations of 3 mg/mL and 5 mg/mL Vipdervir completely inhibits H5N1. At a concentration of 50 g/mL Vipdervir showed an inhibitory effect on SARS-CoV-2. Acute toxicity data revealed that the LD50 of Vipdervir is greater than 35200 mg/kg, b.wt. in mice. Repeated toxicity data indicated that Vipdervir did not induce significant differences in body weight gain, hematology and clinical biochemistry in compared to the control group. The No Observed Adverse Effect Level of Vipdervir is greater than 613.8 mg/kg b.wt./day in rabbits. No delayed toxicity effects of Vipdervir were observed. Conclusion: Vipdervir capsules were found to be antiviral effective and relatively safe in the tested doses and experimental conditions.

5.
Journal of Internal Medicine of Taiwan ; 32(4):281-288, 2021.
Article in Chinese | EMBASE | ID: covidwho-2033398

ABSTRACT

In the face of the COVID-19 pandemic, there is still a lack of miracle drugs for treatment. Repurposing drugs such as Remdesivir and corticosteroids to treat COVID-19 are being studied. Traditional Chinese medicine was widely used during the outbreak of Severe Acute Respiratory Syndrome (SARS) coronavirus infection in China in 2003. It was found that standard medical treatment combined with Chinese medicine treatment may improve the symptoms of SARS patients and speeding resolution of lung infiltration. The commonly used prescriptions for preventing the coronavirus infection are Sangjuyin plus Yupingfeng powder. Various Traditional Chinese medicines with potential to fight SARS-CoV-2 include Liquorice Root and Rhizome, Rhubarb, Heartleaf Houttuynia Herb, Indi-gowoad Root, Tangerine Peel, Scutellaria Root, and Red Sage Root and Rhizome etc. In addition, Chinese patent medicines including Shuanghuanglian Oral liquid, Lianhua Qingwen Capsule, Jinhua Qinggan Granule and Taiwan Chingguan Yihau are recognized as plausible agents for the treatment of novel coronavirus pneumonia. The antiviral, anti-inflammatory and immunomodulatory effects of selected Chinese herbal drugs may attribute to their inhibiting the binding of the coronavirus spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor, inhibiting key enzymes such as 3-chymotrypsin-like protease and ribonucleic acid (RNA)- dependent RNA polymerase during viral replication, and reducing pro-inflammatory cytokines. Since most of the relevant studies mentioned the potential anti-SARS-CoV-2 activity of these agents were only in vitro and animal experiments, more randomized double-blind controlled trials are needed to provide reliable evidence of clinical efficacy in future.

6.
Food Biosci ; 50: 101977, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2004071

ABSTRACT

The novel enveloped ß-coronavirus SARS-CoV-2 (COVID-19) has offered a surprising health challenge all over the world. It develops severe pneumonia leading to acute respiratory distress syndrome (ARDS). Like SARS-COV-2, other encapsulated viruses like HIV, HSV, and influenza have also offered a similar challenge in the past. In this regard, many antiviral drugs are being explored with varying degrees of success to combat the associated pathological conditions. Therefore, upon scientific validation & development, these antiviral phytochemicals can attain a futuristic nutraceutical prospect in managing different encapsulated viruses. Houttuynia cordata (HC) is widely reported for activities such as antioxidant, anti-inflammatory, and antiviral properties. The major antiviral bioactive components of HC include essential oils (methyl n-nonyl ketone, lauryl aldehyde, capryl aldehyde), flavonoids (quercetin, rutin, hyperin, quercitrin, isoquercitrin), and alkaloids (norcepharadione B) & polysaccharides. HC can further be explored as a potential nutraceutical agent in the therapy of encapsulated viruses like HIV, HSV, and influenza. The review listed various conventional and green technologies that are being employed to extract potent phytochemicals with diverse activities from the HC. It was indicated that HC also inhibited molecular targets like 3C-like protease (3CLPRO) and RNA-dependent RNA polymerase (RdRp) of COVID-19 by blocking viral RNA synthesis and replication. Antioxidant and hepatoprotective effects of HC have been evident in impeding complications from marketed drugs during antiviral therapies. The use of HC as a nutraceutical is localized within some parts of Southeast Asia. Further technological advances can establish it as a nutraceutical-based functional food against pathogenic enveloped viruses like COVID 19.

7.
Viruses ; 14(7)2022 07 21.
Article in English | MEDLINE | ID: covidwho-1957451

ABSTRACT

Used in Asian countries, including China, Japan, and Thailand, Houttuynia cordata Thumb (H. cordata; Saururaceae, HC) is a traditional herbal medicine that possesses favorable antiviral properties. As a potent folk therapy used to treat pulmonary infections, further research is required to fully elucidate the mechanisms of its pharmacological activities and explore its therapeutic potential for treating pneumonia caused by SARS-CoV-2. This study explores the pharmacological mechanism of HC on pneumonia using a network pharmacological approach combined with reprocessing expression profiling by high-throughput sequencing to demonstrate the therapeutic mechanisms of HC for treating pneumonia at a systemic level. The integration of these analyses suggested that target factors are involved in four signaling pathways, including PI3K-Akt, Jak-STAT, MAPK, and NF-kB. Molecular docking and molecular dynamics simulation were applied to verify these results, indicating a stable combination between four metabolites (Afzelin, Apigenin, Kaempferol, Quercetin) and six targets (DPP4, ELANE, HSP90AA1, IL6, MAPK1, SERPINE1). These natural metabolites have also been reported to bind with ACE2 and 3CLpro of SARS-CoV-2, respectively. The data suggest that HC exerts collective therapeutic effects against pneumonia caused by SARS-CoV-2 and provides a theoretical basis for further study of the active drug-like ingredients and mechanism of HC in treating pneumonia.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Houttuynia , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Houttuynia/chemistry , Humans , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , SARS-CoV-2 , Thailand
8.
Natural Product Communications ; 17(6), 2022.
Article in English | CAB Abstracts | ID: covidwho-1909973

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is causing coronavirus disease 2019 (COVID-19) pandemic. Ancient Chinese herbal formulas are effective for diseases caused by viral infection, and their effects on COVID-19 are currently being examined. To directly evaluate the role of Chinese herbs in inhibiting replication of SARS-CoV-2, we investigated how the phytochemicals from Chinese herbs interact with the viral RNA-dependent RNA polymerase (RdRP). Total 1025 compounds were screened, and then 181compounds were selected for molecular docking analysis. Four phytochemicals licorice glycoside E, diisooctyl phthalate, (-)-medicocarpin, and glycyroside showed good binding affinity with RdRp. The best complex licorice glycoside E/RdRp forms 3 hydrogen bonds, 4 hydrophobic interactions, 1 pair of Pi-cation/stacking, and 4 salt bridges. Furthermore, docking complexes licorice glycoside E/RdRp and diisooctyl phthalate/RdRp were optimized by molecular dynamics simulation to obtain the stable conformation. These studies indicate that they are promising as antivirals against SARS-CoV-2.

9.
Medicinal Plants ; 14(1):30-45, 2022.
Article in English | EMBASE | ID: covidwho-1863214

ABSTRACT

Respiratory viral infections are a major public health concern because of their global occurrence, ease of spread and considerable morbidity and mortality. Medical treatments for viral respiratory diseases primarily involve providing relief from symptoms like pain and discomfort rather than treating the infection. Very few antiviral medications have been approved with restrictive usage, high cost, unwanted side effects and limited availability. Plants with their unique metabolite composition and high remedial values offer unique preventive and therapeutic efficacy in treatment of viral infections. The present review is focused on the types and mode of action of plant secondary metabolites that have been used successfully ί in the treatment of infections caused by respiratory viruses like Influenza, SARS, MERS, RSV etc. Plant metabolites such as phenolics, alkaloids, terpenoids and oligosaccharides inhibit attachment and entry of the virus. Others such as flavonoids, viz quercetin and baicalein, alkaloids viz sanguinarine, berberine and emetine, specific lipids and fatty acids prevent viral replication and protein synthesis. These metabolites have the potential to be used as lead molecules that can be optimized to develop potent drugs for effectively combating pandemics caused by respiratory viruses.

10.
Journal of Complementary Medicine Research ; 13(1):27-41, 2022.
Article in English | Web of Science | ID: covidwho-1856110

ABSTRACT

COVID-19 is an acute and progressive respiratory illness, which is highly contagious. In 2020, COVID-19 has become a major health issue;its prevalence has been increasing at an alarming rate across the world. Less availability of COVID-19 drugs, high treatment cost, and side effects affect the quality of life of a person infected with COVID-19 in countries with poorly developed health systems. Through infection, patients can die due to acute respiratory distress syndrome (ARDS) initiated by systemic inflammatory reactions due to the undue emancipation of chemokines and pro-inflammatory cytokines by the immune effector cells. The aim of this review is to summarize and evaluate the evidence of traditional medicine, which can facilitate the treatment options according to the clinical manifestations of COVID-19 patients and has proven effectiveness in prevention and control of disease. The systemic search for medicinal plants for the therapeutics of COVID-19 was performed considering the articles published through the different scientific databases. The results suggested that some important medicinal plants reported for antiviral and anti-allergic/anti-inflammatory activities are Withania somnifera "Ashwagandha", Asparagus racemosus "Shatavari", Ocimum sanctum "Basil", Foeniculum vulgare "Fennel", Allium Sativum "Garlic", Tinospora cordifolia "Giloy", Glycyrrhiza glabra "licorice", Organum vulgare "Oregano", Rosmarinus Officinalis "Rosemary", Salvia "Sage", Zinger officinale "Ginger", Torreya nucifera"Japenese torreya", Isatis indigotica "Ban-Lan-Gen" Echinacea, Panax ginseng, Houttuynia cordata, Cannabinoid (CBD). The traditional medicines against COVID-19, currently under clinical trials (NCT04494204, NCT04387643, NCT04395976, NCT04621903, NCT04621903, NCT04544605) and clinical application of traditional Indian and Chinese medicine for the treatment of COVID-19 are also found. This review highlights the major goal of herbal remedies and their significant role to cure antiviral diseases like COVID-19. It is suggested that promising polyherbal formulations and traditional plants must be investigated on the priority basis to solve current crisis.

11.
J Med Food ; 25(4): 355-366, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1795397

ABSTRACT

We investigated the molecular mechanism by which Houttuynia cordata Thunb (HCT) may intervene in coronavirus disease 2019 (COVID-19) and COVID-19-induced cytokine storms using network pharmacology and molecular docking approaches. Using the Traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a "component-target-pathway" topology map of HCT for COVID-19 treatment was constructed using Cytoscape. Core target genes were analyzed using the STRING database, and the signal pathway map and biological mechanism of COVID-19 therapy were obtained using cluster profilers. Active components of HCT were docked with severe respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) using AutoDockTools. Data visualization and statistical analysis were conducted using the R program. A molecular dynamic simulation was carried out with the Groningen Machine for Chemical Simulation program. HCT had six active anti-COVID-19 ingredients and 45 molecular targets. Their crucial target proteins for COVID-19 treatment were the RELA (nuclear factor kappa B [NF-κB] p65 subunit), interleukin 6, and mitogen-activated protein kinase 1. In functional enrichment analysis, the potential molecular targets of active components of HCT for COVID-19 treatment belonged to 18 signaling pathways (adjusted P = 2.12E-11). Gene ontology obtained by Kyoto Encyclopedia of Genes and Genome enrichment screening showed that the primary mechanism of COVID-19 treatment was upregulation of protein kinase C followed by downregulations of T cell differentiation and proliferation and NF-κB signaling. Molecular docking showed that the active components of HCT (quercetin and kaempferol) had similar binding affinities for SARS-CoV-2 3CLpro and SARS-CoV-2 RdRp, primary COVID-19 target proteins as did clinically used drugs. These results were confirmed with molecular dynamics simulation. In conclusion, multiple components of HCT, especially quercetin and kaempferol, have the potential to treat COVID-19 infection and COVID-19-induced cytokine storm by targeting multiple proteins.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Houttuynia , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , NF-kappa B , Network Pharmacology , Quercetin , RNA-Dependent RNA Polymerase , SARS-CoV-2
12.
Saudi J Biol Sci ; 28(12): 7517-7527, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1404835

ABSTRACT

Houttuynia cordata Thunb., a perennial herb belonging to the Saururaceae family is a well-known ingredient of Traditional Chinese medicine (TCM) with several therapeutic properties. During the severe acute respiratory syndrome (SARS) outbreak in China, it was one of the approved ingredients in SARS preventative formulations and therefore, the plant may contain novel bioactive chemicals that can be used to suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus for which there are currently no effective drugs available. Like all RNA viruses, SARS-CoV-2 encode RNA-dependent RNA polymerase (RdRp) enzyme which aids viral gene transcription and replication. The present study is aimed at understanding the potential of bioactive compounds from H. cordata as inhibitors of the SARS-CoV-2 RdRp enzyme. We investigated the drug-likeness of the plant's active constituents, such as alkaloids, polyphenols, and flavonoids, as well as their binding affinity for the RdRp enzyme. Molecular docking experiments show that compounds 3 (1,2,3,4,5-pentamethoxy-dibenzo-quinolin-7-one), 14 (7-oxodehydroasimilobine), and 21 (1,2-dimethoxy-3-hydroxy-5-oxonoraporphine) have a high affinity for the drug target and that the complexes are maintained by hydrogen bonds with residues like Arg553, Cys622 and Asp623, as well as hydrophobic interactions with other residues. The lead compounds' complexes with the target enzyme remained stable throughout the molecular dynamics simulation. Analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) revealed the key residues contributing considerably to binding free energy. Thus, the findings reveal the potential of H. cordata bioactive compounds as anti-SARS-CoV-2 drug candidate molecules against the target enzyme.

13.
Mol Divers ; 26(1): 365-388, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1219154

ABSTRACT

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC-MS/LC-MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of - 7.274 and - 5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020-3 has demonstrated better stability in the ligand-receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Houttuynia , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Houttuynia/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL